
PFIFO[0]
Pointers

DFIFO[0]

H
EA

D

T
A

IL

N
EX

T

Li
ne

 n

Li
ne

 0

Li
ne

 1

Optical
Link

V
M

E
B
U

S

DFIFO[13] Pixel Data

Specifications:

Incoming data rate (per pixel): 750ns
Basic FOXI clock rate (words/sec) 4 MHz

VME bus interface:
A32/D16/D32/D64 single transfer 250ns
Block transfer (after 250ns setup) 125ns
Transfer rate using D64 block transfers is 64MB/Sec

Maximum number of buffers: 14
Buffer capacity:

SRAM chip size 32K 64K 128K 256K
Total size (Pixels) 128K 256K 512K 1024K
PFIFO size 512 512 512 512
Average DFIFO size 8K 16K 32K 64K

32-bit VME Address Map

bbbbbbbb CCCC0xxP PPPPPPPP PPPPPPP0 Buffer Space
bbbbbbbb CCCC1xxx xxxxxxxx RRRR0000 Channel Reg
bbbbbbbb 11111xxx xxxxxxxx RRRR0000 Global Reg

b 8-bit board address set by dip switch.
C 4-bit channel address.
P 16-bit pointer.
R 4-bit register number.

 0000 PPPPPPPP PPPPPPPP
and 0000 MMM11111 11111111
 or BBBB BBB00000 00000000

AND

OR

4

16

20

CHANNEL

POINTER

BASEMASK

LOOKUP
TABLE

83

MEMORY
ADDRESS

VCI MODULE

Overview:
Pixel data is digitized and collected from several CCD

devices and sent via an optical fiber to the VME Camera
Interface (VCI). Data on the fiber is sent on one of 14
logical channels - a separate channel for each CCD
amplifier. The VCI maintains a separate FIFO buffer for
each channel. Data is buffered until an entire raster line is
received and then transferred, via VME bus, to a controlling
CPU.

Each channel buffer is a two level FIFO, with pixel data
being stored in the larger DFIFO, and pointers to line
boundaries being stored in the PFIFO. In typical operation,
an End of Line (EOL) signal from the fiber causes the VCI to
interrupt the VME processor. The VME processor then
reads the PFIFO to get pointers to the line boundaries and
uses them to access the DFIFO memory space.

The VCI module has 3 functional units:
A FOXI optical receiver which takes serial data from

the fiber and converts it into 10-bit words. Each pixel is sent
as three of these words- 16 bits of data, 4 bit channel ID,
and other control information.

A standard VME bus interface including 64-bit block
transfer capability and a programmable 7 level interrupt
generator with 8-bit vector.

A memory array that uses static RAMs to implement all
14 FIFOs. The VCI uses standard byte-wide SRAM chips
from 32K to 256K bytes. Buffers are managed by a Xilinx
4000-series programmable gate array and their size and
location can be configured on a per buffer basis.

Memory Map:
To the right is the VME address map for the VCI.

There are three address spaces: Buffer space, Channel
Register space, and Global register space. All of these
spaces are accessible via VME D16 single transfer
mode. Only Buffer space is accessible via D32, D64,
and Block transfer mode.

Buffer Space:
All of the incoming pixel data is stored in Buffer

Space. Buffer space is standard static memory and
can be 128K to 1024K words depending on the
memory chips used. A small translation table is used to map VME
addresses to buffer memory addresses. The table is initialized by
system software and allows for flexible configuration of buffer size
depending on memory size, number of channels, and raster line
length.

As shown here, a VME buffer space address consists of a 4-bit
channel number and a 16-bit offset pointer. The channel number is
used as an index into the lookup table and produces a 7-bit BASE
address and a 3-bit MASK. The mask is logically ANDed with the
upper 3 bits of the pointer. This allows the buffer pointer wrap around
to be set at 13, 14, 15, or 16 bits corresponding to buffer sizes of 8K
to 64K pixels. The resulting pointer is logically ORed with the BASE
address to produce a 20-bit memory address.

Buffers must not be mapped into the upper 8K pixels, since that
space is reserved for PFIFO storage.

Channel Registers
VME= bbbbbbbb CCCC1xxx xxxxxxxx RRRR0000

RRR Name Type Format
0 C_CONF R/W BBBB BBBx MMMx xxDE
1 C_HEAD R/W PPPP PPPP PPPP PPPP
2 C_TAIL R/W PPPP PPPP PPPP PPPP
3 C_NEXT R PPPP PPPP PPPP PPPP

B: Base E: Enable
M: Mask D: Dir
P: Pointer

DMA access
In order to transfer data from the VCI to the

CPU, the CPU must supply its DMA controller with a
starting address and block length. These values are
derived from C_TAIL and C_NEXT and are
computed differently depending on the .DIR bit. The
following should be used:

if (C_CONF.DIR == FORWARD)
{ Start = C_TAIL;

Length = (C_NEXT-1) - Start; }
else
{ Start = C_NEXT+1;

Length= C_TAIL - Start; }

/* Modulo FIFO size and in bytes */
M= (C_CONF.MASK << 13) | 0x1fff;
Start= (CCCC << 20) | ((Start&M) << 2)
Length = (Length & M) << 2;

Global Registers
VME= bbbbbbbb CCCC1xxx xxxxxxxx RRRR0000

C R Name Type Format
14 3 G_SNUM R NNNN NNNN NNNN NNNN
15 3 G_LNST R xxxx xxSS SSSS SSSS
x 4 G_STAT R VVVV VVSS SSSS SSSS
x 5 G_HPTR R xxxx xxxP PPPP PPPP
x 6 G_TPTR R xxxx xxxP PPPP PPPP
x 7 G_INTR R/W vvvv vvvx xLLL xEEE
x 8 G_CMND W xxxx xxxx xxRC DdFf
x 9 G_POPA W xxxx xxxx xxxx xxxx
x 10 G_POPB W xxxx xxxx xxxx xxxx

N: SERIAL# S: STATUS V: VERSION
v: VECTOR L: LEVEL E: ENABLE
R: RESET C: CLEAR D: ENBDAT
F: ENBFXI P: POINTER

Status bit definitions for G_LNST and G_STAT:

0 .PROTO There was a protocol error in received data.
1 .OPTIC An error occurred on the optical link.
2 .DOVFL The DFIFO overflowed for some channel.
3 .POVFL The PFIFO overflowed for some channel.
4 .UNDRF A POP was attempted while G_AVAIL==0.
5 .DISAB Data was received on a disabled channel.
6 .FXIEN The Foxi receiver is enabled.
7 .DATEN The data logic is enabled to take data.
8 .AVALA There are lines in the FIFOs for CPU A..
9 .AVALB There are lines in the FIFOs for CPU B.

Channel Register Space:
Each of the 14 channels has its own set of 4 registers.

They are accessed by setting the CCCC field in the VME
address to a channel number (0 to 13) and setting bit 19 high.

C_CONF Channel configuration. This contains 4 fields:
.BASE 7-bit buffer base address
.MASK 3-bit mask for offset pointer.
.DIR 1-bit flag sets the FIFO direction. If this flag is set,

then pixels will be stored in reverse order. This is
to accommodate CCD amplifiers that read out
lines from right to left instead of left to right.

.ENAB This enables the channel to take data. If this bit is
not set and a pixel comes for the channel, an error
flag will be set.

C_HEAD This is a 16-bit pointer to the head of the DFIFO.
Incoming pixel data is stored at the address
pointed to by C_HEAD, and C_HEAD is
incremented (or decremented if .DIR is set).
When an EOL is received, this register is pushed
into a PFIFO. C_HEAD must be initialized to 0
before the receiver is enabled. Access to this
register is provided for initialization and diagnostic
purposes. It will probably not be used during
normal data acquisition.

C_TAIL This is a 16-bit pointer to the tail of the DFIFO
and is the start of the current raster line. C_TAIL
must be initialized to 0 before the receiver is
enabled.

C_NEXT This is a 16-bit pointer to the next raster line. It
points to one pixel past the end of the current line
C_TAIL and C_NEXT come out of the PFIFO.

Global Register Space:
Global registers are accessed by setting the CCCC bits in

the VME address to 15 or 14. These registers affect all 14
channels.

G_SNUM and G_LNST are special registers because they
contain information about the current line. (Current line refers
to the raster line that is at the tail of the DFIFOs.) The VCI logic
actually implements 16 PFIFOs. The first 14 are used for pixel
pointers. The other two are reserved for keeping status
information for each raster line. When an EOL is received, the
status information is pushed into these PFIFOs and can be read
by the CPU using the G_SNUM and G_LNST registers

G_SNUM This contains the 16-bit serial number of the
current line. Each time the VCI receives an EOL,
it increments a 16-bit serial number and pushes it
into a PFIFO. This is used to keep track of
lines that may be missed because of FIFO
overflow or some other error.

G_LNST This contains the 9-bit VCI status that was in
effect at the time the current line was received.
It is sticky in the sense that if an error bit is set
at any time during reception of the line, but will
stick on until the EOL is received and it is
pushed into the PFIFO. The error bits are
then cleared for the start of the next line.
The format for this register is shown to the
right. Bits 8 and 9 are invalid for G_LNST but
are valid for G_STAT.

G_STAT Status register. This contains 9 status bits and a 6 bit version number. The format for the status bits is
the same as for the G_LNST register and is shown on the previous page. The version number is a
firmware revision level. These bits will be changed each time the XILINX programmable gate array is
changed.
The status bits are sticky -- they will remain on until the CLEAR command is issued. See the section on
error recovery for more information.

G_HPTR These registers are the Head Pointer and Tail Pointer for all of the PFIFOs. The head pointer gets
G_TPTR incremented every time a valid line is received. The tail pointer is incremented whenever a G_FPOP is

done. These registers are provided for diagnostics, but they may be used by software to determine
how many lines are in the buffers.

G_INTR VCI interrupt configuration register.
0 .EOLEN Enable EOL interrupts. If this is on, each time the line available (.AVAIL) flag is set a VME interrupt

will be issued. Also, an interrupt will be issued if .EOLEN is set while .AVAIL is on.
1 .ERREN Enable Error interrupts. If this is on, each time an error bit gets set, a VME interrupt will be

generated. Error interrupts are issued on the same level as EOL interrupts. The lowest bit of the
interupt vector will be a 0 for EOL interrupts and a 1 for error interrupts.

2 .ALTEN Enable alternate interrupt level. An alternate interrupt level allows two CPUs to read out a single
VCI. If this flag is set, then the VCI will send an interrupt on two levels. In this case, the .LEVEL
field must be an even number (2, 4, or 6). When an interrupt condition occurs, the VCI will assert
and respond to interrupts for .LEVEL and .LEVEL+1.

 6:4 .LEVEL 3-bit interrupt level. This must be a number from 1 to 7 and must be an even number if .ALTEN is
set. The controlling CPU(s) must be configured to respond to this interrupt level.

15:9 .VECTR Upper 7 bits of 8-bit interrupt vector. This number is passed to a CPU when it acknowledges an
interrupt. The lowest bit is a 0 for EOL interrupts and is a 1 for error interrupts.

G_CMND VCI command. This has 6 bits that control the operation of the VCI. The register is write-only.
0 .DISFXI Disable FOXI receiver.
1 .ENBFXI Enable FOXI receiver. If .ENBFXI and .DISFXI are both asserted, the FOXI is disabled.
2 .DISDAT Disable data receive logic. EOLs are still counted.
3 .ENBDAT Enable data receive logic at next EOL. .DISDAT has priority over .ENDAT.
4 .CLRERR Clear error register.
5 .RESET Reset the whole board to power up conditions. It may take as long as a second for the VCI to

recover from a RESET.

G_POPA Pop data out of the fifos. This removes one line from the fifos. It updates C_TAIL and C_NEXT for all
G_POPB 14 channels and updates G_SNUM and G_LNST. When .ALTEN is set in the G_INTR register, then

both POPA and POPB must be accessed (in any order) before the line will be popped. This allows two
CPUs to coordinate their access to the VCI. G_STAT.AVALAI or .AVALB will be cleared when the
corresponding G_POPx is issued. When the pop finishes, if there is another line available, the .AVALx
flags will be set and a new interrupt will be issued.

Programming

Initialization:
After a reset or power up, the Foxi receiver will be disabled. Several things must be done before it is enabled:

Interrupts: Set the G_INTR register to appropriate values. Refer to the VME CPU user manual for information on
choosing an interrupt level and vector.

#define G_INTR *(word *)(BOARD | 0x00f80060)
G_INTR= 0x3061; /* Set interrupt vector 30, level 6, and enable line interrupts */

Determine Memory Size: The following code fragment will determine how much SRAM is installed in the VCI:

#define C_CONF(Chan) *(BOARD| (Chan<<20) | 0x00080000)
#define DFIFO(Chan,Ptr) *(BOARD| (Chan<<20) | (Ptr << 1))
C_CONF(0)= 0x00f0; DFIFO(0,0)= 20; /* write 20 to VCI memory address 00000 */
C_CONF(3)= 0x80f0; DFIFO(3,0)= 19; /* Write 19 to 80000 */
C_CONF(2)= 0x40f0; DFIFO(2,0)= 18; /* Write 18 to 40000 */
C_CONF(1)= 0x20f0; DFIFO(1,0)= 17; /* write 17 to 20000 */
MSIZE= DFIFO(0,0); /* Due to address wrap, this is the number of actual memory address bits */

512K

 32K

DFIFO(0) DFIFO(13)
8K
PFIFO
space.

Wasted
spaceExample: 14 DFIFOs in a 512K pixel memory

Set Lookup Table and clear Channel registers.
The lookup table must be configured. In general, the buffer space is divided equally among all of the active
channels. Since the upper 8K of buffer space is reserved for PFIFO storage, this may result in some assymetry
and some buffer space may be wasted. The following example shows how to configure for 14 buffers of equal
size:

BSIZE= 0x0200 << (MSIZE-17);
BMASK= (0x00e0 << (20-MSIZE)) & 0x00e0;
BBASE= 0x0001;
for (Chan= 0; Chan < 14; ++Chan)
{ C_CONF(Chan)= BBASE | BMASK;

C_HEAD(Chan)= 0;
C_TAIL(Chan)= 0;
BBASE += BSIZE; }

Start Foxi
The foxi receiver is started by writing a 2 to G_CMND.

Readout:
Readout should be interrupt driven. For each interrupt the following things should be done.

Check line status (G_LNST).
Check for serial number continuity (G_SNUM).
For each channel:

Read C_TAIL and C_NEXT and compute line boundaries.
Verify correct size of line.
Do a DMA transfer of the line to CPU memory.

Do a G_FPOP
Exit.

Error Recovery:
There are three kinds of errors that must be handled- Transmission errors, Overflow errors, and System errors.

Transmission errors (.OPTIC and .PROTO) are caused by problems with the optical link or transmitting electronics.
These errors may be intermittent and therefore recoverable. The following steps are suggested for handling
transmission errors:

If G_LNST has .OPTIC or .PROTO set:
Discard or mark the current line as bad and update the error statistics.
Clear the G_STAT register by writing a 0x10 to G_CMND
Read the G_STAT register. If no error bits are set, then continue.
If error bits are still set, then declare a fatal error.
Continue reading and clearing the G_STAT register until the error condition is gone.

Overflow errors (.DOVFL and .POVFL) are caused when a FIFO gets too full. This may happen if the CPU gets
distracted and fails to empty them for a long time. When an overflow happens, the VCI will stop taking data on all
channels until the CPU clears the problem. It will still count EOLs, but will not take data. It may make sense to handle
overflow errors in an interrupt routine, since they may be caused by a failure in the normal readout software.

When an overflow occurs, the following steps should be taken.

Read lines normally until a line is found with .DOVFL or .POVFL set in G_LNST.
Issue G_FPOP commands until the .AVAIL bit is clear.
Clear the C_HEAD and C_TAIL pointers for all channels.
Issue an .ENBDAT command and clear errors by writing a 0x18 to G_CMND.

System errors (.UNDRF and .DISAB) occur because there is some problem with the system software.
Underflow occurs when the software tries to G_FPOP when there are no lines in the FIFOs. This can be ignored

without affecting the hardware, but should probably be declared as a fatal error.
.DISAB occurs when data arrives on the optic link for a channel that is disabled. This could indicate a problem with

the VCI initialization, or a problem with the data transmission. It should probably be treated the same as a transmission
error.

F
Fermiland

VCI Front Panel

Optical Connector

Power
Xilinx Loaded
VME Active
Foxi Active
Line Available
Optic error
Protocol Error
Overflow Error
System error

Clear Errors

Reset

ONOff

0

Error Mode
Xchecker Enable
Board Address

Xchecker
Connector

LED display

Encoding of Foxi Data

Bits 9:8 Bits 7:0
00 Lower byte of pixel.
01 Upper byte of pixel
10 4-bit channel number
11 EOL- End of Line

Installation:
The VCI may be installed in any slot of the VME bus. It uses the IACK

daisy chain, so there must be no empty slots between slot 0 and the VCI.
The board base address is set via the DIP switch on the front panel.
Front Panel:

DIP Switch: The dip switch has 10 bits. The lower 8 set the board base
address. The ninth switch enables the Xchecker connector. The tenth
switch sets the LED display mode.

LED Display: There are 9 LEDs to display system status. The status
lights are green and the error lights are red. The error lights can be set, via
dipswitch 10, to be transient or sticky. If they are sticky, they will remain on
until the CLEAR button is pressed. Error lights correspond to error bits in the
G_STAT register. Overflow Error is a combination of DOVFL and POVFL.
System Error is a combination of UNDRF and DISAB.

Xchecker Connector: This connects to a computer to allow downloading
and probing of the Xilinx chip.
 Optical Fiber Port: The optic link connects here.

Reset Switch: Resets the VCI.

DESIGN:

Optical Data Format:
The FOXI chip receives data as 10 bit words. The upper 2 bits of

each word are used to indicate what type of data is contained in the
lower 8 bits. There are 4 data types as shown here. A pixel
transmission consists of three words: A channel number followed by an
upper byte followed by a lower byte. When all pixels for the current line
have been sent on all channels, the camera electronics ends the line by
ending an EOL.

Bus Timing:
Access to the memory is controlled by the Xilinx gate array. Transfers can occur every 62.5 nanoseconds and are

pipelined three stages deep. The first stage of the pipeline is a simple arbitration between the VME bus and incoming
data. The incoming optical data has priority. During the second stage, the data path is computed- the next address is
selected, and all output enables, bypass enables, write enables, etc. are readied. At the third stage, the new datapath
control signals are asserted and a transfer is done.

The pipeline is synchronized with the VME bus as shown. During block transfers, the pipeline can read the next
sequential address while the current one is being transferred. This allows a word to be transferred every 125
nanoseconds, even if the master is fairly slow.

Arbitrate

Compute
Data Path Transfer

Arbitrate

Compute
Data Path Transfer

ADDRESS
STROBE

DATA
STROBE

DTACK

16

16

16

1616

16

16

16

16

16

18

ADDRESS

DATA

M0
Memory
256Kx16

M2

M2

M3

CE

W O

E

E

EX0

X1

X2

V0

V2

V3

V1

FOXI

12

8 8

5

24

10

XILINX
X4008(?)

ME(3:0)
VE(3:0)
XE(2:0)
UDE
LDE
Stat

Display

6

LDE

UDE

CKE

VE0

VE1

VE2

VE3

XE0

XE1

XE2

VME
BUS

CONTROL

INTERRUPT

ADDRESS

A Modifier

ADDRESS

DIP Switch

16MHz

ME0

ME1

ME2

ME3

26
V

12

MOE
MWR

State Machine
Control is implemented as a state machine. Each word from the optical link causes some action in the state machine.

Each of the four data types causes a different action.

Type Function Address Memory Registers
2 Channel #

Read TAIL from PFIFO 1111 111C CCCT TTTT TTTT - R. HEAD,BASE,MSK
Increment Head - Read TAIL -
Compare HEAD == TAIL - - -

1 Upper byte
Store HEAD to PFIFO 1111 111C CCCH HHHH HHHH - -

- Write ++HEAD W. ++HEAD

0 Lower byte
Store PIXEL to DFIFO Map(BASE,HEAD,MSK) - -

Write PIXEL -

3 End of Line
Store SNUM to PFIFO[14] 1111 1111 110H HHHH HHHH - -
Increment SNUM - Write SNUM
Store STATUS to PFIFO[15] 1111 1111 111H HHHH HHHH - -
Clear line status - write STATUS
Increment H pointer.

Block Diagram
Data into and out of the Xilinx chip is

transferred via a single 16 bit bus. Bypass
switches convert the 64-bit memory bus into 16
bit bus for the Xilinx chip, or a 16, 32, or 64 bit
bus for the VME bus. Bidirectional data registers
allow a VME transfer to take place while the
memory is being used for other purposes.

V0 - V3 Bidirectional Register (2952)
X0 - X3 Bypass switch
M0 - M3 Memory

ME0-3 Memory Chip Enable
MWR Memory Write
MOE Memory Output Enable

XE0-2 Bypass Enable
LDE/UDE Enable to VME bus

CKE Clock enable to VME.

